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a b s t r a c t 

Segmentation of retinal blood vessels is important for the analysis of diabetic retinopathy (DR). Existing 

methods do not prioritize the small and disconnected vessels for DR. With the aim of paying attention to 

the small and disconnected vessel regions, this study introduced Euler characteristics (EC) from topology 

to calculate the number of isolated objects on segmented vessel regions, which is the key contribution 

of this study. In addition, we utilized the number of isolated objects in a U-Net-like deep convolutional 

neural network (CNN) architecture as a regularizer to train the network for improving the connectivity 

between the pixels of the vessel regions. The proposed network performance of the regularizer based on 

EC in reconstructing vessel regions is compared over the network without our regularizer. Furthermore, 

the capacity of the proposed regularizer approach in enhancing the smoothness and pixel connectivity of 

the vessels is compared with graph-based smoothing (GS) and combined GS with isolated objects (GISO) 

regularizers for delineating blood vessel regions. The proposed approach achieved the area under the 

curve value of 0.982, which is much higher than the state-of-the-arts, and thus it is suggested that the 

proposed system could support accuracy and reliability in decision-making for DR detection. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Diabetic retinopathy (DR) is one of the causes of visual impair- 

ent in aging population and signifies an increased risk of coro- 

ary heart disease [1] . As it involves changes in the shape and 

tructure of blood vessels in the fundus, visual impairment is of- 

en detected by analyzing fundus images. Fundus images are color 

mages that represent the inner surface of the human eye and are 

ften used by doctors to study at the retina and the anatomical 

omponents of the eye. Therefore, accurate identification of large 

nd small retinal vessels with diameters of less than a pixel can 

e used as an early bio-marker for the diagnosis of DR [2,3] . 

However, fundus images are affected by noise. Moreover, ex- 

mining the small blood vessels is difficult and time-consuming. 

ence, automatic characterizing of retinal blood vessels is impor- 

ant for the detection of DR. To this end, computer-aided segmen- 
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ation of retinal blood vessels, based on pattern recognition, and 

upervised and unsupervised machine learning, has been success- 

ully proposed [4–6] . Various studies in recent times have reported 

mprove performance of blood vessel segmentation based on deep 

earning techniques [7–13] . Several U-Net models based on convo- 

utional neural networks (CNNs) have been developed by modify- 

ng the number of layers in the encoder and decoder architectures 

nd have achieved better results for retinal blood vessel segmen- 

ation [9,14–16] . However, these approaches considered large and 

edium vessels as it appears in the ground truth. They failed to 

haracterize the damaged tiny or small vessels, and hence unreli- 

ble diagnosis may occur. In this study, we aimed to delineate, in 

ddition to the thick vessels, damaged tiny or small vessels that do 

ot appear in the ground truth but appear in the original fundus 

mages. 

To address the small vessel connectivity problem, authors in 

17] introduced a graph-based smoothing (GS) regularizer that 

ushes the network to consider small vessel. The GS regularizer 

old smoothness level by calculating graph laplacians between the 

essel and surrounding background area. In contrast, in this study, 

e proposed a different approach to penalize the network to pay 

ore attention to small vessels by utilizing the number of isolated 
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Fig. 1. Illustration of the isolated object in vessel segmentation task. (a) input fun- 

dus image. (b) groundtruth segmentation of the vessels. (c) result of the baseline 

without regularizer. (d) proposed isolated object regularizer (red color arrow in- 

dicates retaining the width of the small and disjointed vessel connectivities). (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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bjects, as shown in the Fig. 1 . Furthermore, we observe that most 

f the existing architectures fail to accurately detect the vessel con- 

ections especially on the thinner and small branches of the ves- 

els ( Fig. 1 c). 

However, for accurate segmentation, it important to preserve 

he vanished blood vessels as isolated objects so as to use them for 

nding entire vessel connections. Hence, this study is attempted to 

race the retinal vessel connections using Euler characteristics (EC). 

he EC is an essential topological invariant for realizing the num- 

er of components and number of enclosed cavities to utilize the 

C as a demonstration of vessel connectivity [18,19] . 

We introduced a regularizer based on EC to minimize the num- 

er of isolated objects, especially in the small branches and tiny 

etinal vessel regions. The proposed method is based on the crite- 

ion of a vessel structure that is fully connected or if consisting of 

inimal number of isolated objects. 

Specifically, we proposed two regularizers, minimum number of 

solated objects (MISO) and differences of number of isolated ob- 

ects (DISO) between predicted and true segmentation groundtruth 

ased on EC, to delineate tiny vessel regions. We developed a U- 

et-like CNN architecture to evaluate the performance of the pro- 

osed regularizers in delineating small vessel connections. The in- 

eresting key point in this study is implementing mathematical 

opology approach in the neural network architecture. The main 

ontribution of this study is summarized as follows : (i) We pro- 

osed EC-based regularizers to estimate the number of isolated ob- 

ects, (ii) compared the architecture performance of the proposed 

ISO and DISO regularizers with the architecture without regular- 

zer, (iii) compared the performance of our proposed regularizers 

ith GS and combined GS plus isolated objects (GISO) regularizers 

n segmenting the vessel connections, and (iv) analyzed the perfor- 

ance of the proposed approach with the state-of-the-art method 

or recognizing small blood vessel regions. 
84 
. Related works 

Image segmentation plays an important role in medical imag- 

ng applications. In deep learning domain, segmentation area has 

een widely utilized to support medical image analysis [20,21] . In 

22] , the authors developed a multi-label method based on super- 

ised structured for the segmentation of retinal vessels. They ap- 

lied pre-processing methods before feeding the image into the 

etwork. Ortiz et al. [7] , in contrast, proposed a deep CNN that ig- 

ored pre-processing steps and directly used raw RGB image as in- 

ut. In [8] , the segmentation network was divided into two steps: 

sing multiscale CNN and using fully connected conditional ran- 

om fields (CRFs). 

Thick and thin vessel segmentation were considered using 

egment-level loss and pixel-wise loss [10] . Similarly, deep ves- 

el segmentation was proposed that achieved high quality vessel 

robability map using a CNN network and a CRFs layer [12] . The 

ully CNN network generates probability maps, whereas carry out 

egmentation using dense global pixel correlation. The authors in 

13] utilized stationary wavelet transform with a multiscale fully 

onnected CNN to adapt with the varying width and direction of 

he vessel structure in the retina. However, aforementioned archi- 

ectures used multiple steps that increases misclassification error 

nd computational complexity. Several medical image segmenta- 

ion methods using U-Net-based CNNs have been proposed for 

olving the segmentation problem and reducing the error rate [16]. 

he U-Net structure takes care of the sampling that is required to 

heck class-imbalance factors. Furthermore, it is capable of scan- 

ing an entire image in just one forward pass, which enables it to 

onsider the full context of the image [23,24] . Hence, this study 

lso considered using U-Net-like CNN architecture to evaluate the 

fficiency of the proposed regularizers. 

Generally, the learning process of the neural network is maxi- 

ized using task-specific regularization techniques to avoid over- 

tting and push the sparsity of the network. The authors in 

25] proposed a regularizer with scribbles, combining partial cross 

ntropy and normalized cut for weakly-supervised segmentation. 

In [17] , the authors proposed graph-based smoothing regular- 

zer that treated the network paying attention to small and tiny 

essel connections. It treated the image as two graphs by calcu- 

ating the graph laplacians on the vessel region and background 

egions. In contrast, in this study we proposed MISO and DISO reg- 

larizers based on EC, which calculate the number of isolated ob- 

ects for accurate segmentation of vessel regions. 

. Proposed methodology 

This study proposed EC-based regularizers to estimate the num- 

er of isolated objects in U-Net-like deep CNN architecture for de- 

ineating small retinal vessel connections on a fundus image. Be- 

ore training process, we enhanced the dataset with some pre- 

rocessing steps. The image is converted into grayscale followed by 

ata normalization and contrast-limited adaptive histogram equal- 

zation (CLAHE). We applied normalization to keep the image into 

he same scale and CLAHE technique to enhance the contrast of 

he grayscale image. 

.1. Constructing Euler characteristics for the number of isolated 

bjects 

Euler characteristic (EC) is a global topology, which invariant to 

ll topological transformations such as rotation and scale. Gener- 

lly, the EC of a two dimensional image is considered to be the 

umber of connected component minus the number of holes. The 

bjective function of the EC is computed based on the relationship 
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Fig. 2. An example of constructing Euler characteristics using mask patterns (a) il- 

lustration showing object (black) pixels based on 8 × 8 neighborhood pixels. (b) il- 

lustration calculating Euler characteristics for the number of isolated object accord- 

ing to the number of vertices (P), sides (S), and faces (F) from object pixels (a). 

Fig. 3. Two ways of constructing Euler characteristics using mask patterns for tri- 

angulation. (a) and (b) show examples of triangulation in opposite direction with 

each other. 
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Fig. 4. Proposed architecture using Euler characteristics regularizer. 
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etween the number of vertices (P ) , sides (S) , and faces (F ) : 

C = F − S + P (1) 

owever, in the case of simple polygon without holes, the EC is 

qual to one. Here we briefly explained how to define the EC effec- 

ively by constructing vertices, sides, and faces on 8 × 8 neighbour- 

ood pixels connectivity using simple mask patterns, as shown in 

ig. 2 . It calculates EC directly related to the number of isolated 

bjects. The EC on the binary image based on 8 × 8 neighbourhood 

ixels can be constructed as follows; 1) transforming object pixel 

n the image to a vertice, 2) adding a side between the vertices 

ith 8-connectivity without a cross side, 3) summing the number 

f vertices, 4) summing the number of sides, 5) summing the num- 

er of faces or triangles, and finally, 6) calculating EC using Eq. (1) .

s can be seen in Fig. 2 , EC estimated the number of isolated ob-

ects as 2, with number of vertices, sides, and faces as 19, 33, and

6 respectively ( EC = F − S + P = 16 − 33 + 19 = 2 ). 

Furthermore, to address the invariant problem in preserving the 

essel connections, we considered constructing vertices, sides, and 

aces in two different directions. It can be briefly explained us- 

ng mask patterns on a 8 × 8 neighbourhood pixels connectivity, as 

hown in Fig. 3 a and b. Then EC is estimated as EC 1 = F 1 − S 1 + P 1 
nd EC 2 = F 2 − S 2 + P 2 from Fig. 3 a and b, respectively, which is di-

ectly related to the number of isolated objects. Finally, the total 

umber of isolated objects E is considered by computing the aver- 

ge between these two directions, which is defined as 

 = 

E C 1 + E C 2 
2 

(2) 

.2. Network implementation 

The regularizer layer based on EC for small vessel connections 

s evaluated using U-Net-like deep CNN structure. The proposed 
85 
rchitecture contains an encoder and decoder module, as shown 

n Fig. 4 . The encoder module includes three blocks. First, two 

onvolutional layers followed by ReLU and max-pooling layer each 

aving 32 feature maps. Second, two convolutional layers followed 

y ReLU and max-pooling layer with 32 and 64 feature maps, re- 

pectively. Third, two convolutional layers each having 128 feature 

aps. The decoder module contains four convolutional layers fol- 

owed by ReLU and one convolution layer without ReLU. The out- 

ut from decoder is upsampled with the factor of 2. After deconvo- 

ution the feature maps were concatenated with the encoder lay- 

rs using skip connections. Then pixel-based probability maps and 

redictions are generated by a sigmoid classifier function. Finally, 

fter the sigmoid function we employed EC. 

By following [26–28] , we calculated EC and incorporated this 

nto the network using one layer. Let us consider input image 

s X ∈ R 

M.N , and T ∈ { 0 , 1 } M.N be the corresponding groundtruth,

ith 1 indicating pixels in the vessel and 0 is indicating pixels 

n the background area. And let us consider f be a U-Net param- 

terized by weight W . Then the output image of the network is 

 = f (X, W ) ∈ [0 , 1] M.N . The binary cross entropy (BCE) loss is used

or calculating the vessel region segmentation, which is defied as 

 BCE = 

∑ 

i =1 

t i log(y i ) + (1 − t i ) log(1 − y i ) (3) 

Although U-Net predicts the vessel region, the BCE loss treats 

very pixel independently. Therefore, it fails to estimate the topo- 

ogical characteristics such as the number of isolated objects on a 

essel region. It can be clearly observed as the misclassification of 

mall vessel regions in Fig. 1 . This could be accounted to the fact 

hat some pixels exhibit low costs in terms of BCE loss, and thus 

ave large impact on the topology of the predicted results. To ad- 

ress this problem, we proposed a regularizer based on EC that 

enalized BCE if have many isolated objects comprises the target 

ask. 

Therefore, we incorporated EC into the network that retrieved 

he number of isolated object ( E) through the number of vertices, 

ides, and faces of the segmented regions using the Eqs. (1) and 

2) . We used E as a regularizer term with the cross entropy cost 

unction to train the proposed network for precisely delineating 

he small vessel connections. It forced the network to minimize the 

umber of isolated objects by minimizing the misprediction error 

here are large number of isolated objects, and thus we named it 

he MISO regularizer. It is defined as 

 MISO = L BCE + αE OUT (4) 
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here α is a scaling parameter to control the regularizer and E OUT 

epresents the number of isolated objects in the segmentation out- 

ut. 

.3. Regularization based on the differences of number of isolated 

bjects between prediction and groundtruth 

In this study, we also investigated the regularizer based on 

he differences of number of isolated objects between output and 

roundtruth (DISO) in delineating the vessel regions. Different 

rom MISO, it forces the number of isolated objects between the 

utput and the groundtruth to be equal or more closer. It is de- 

ned as 

 DISO = L BCE + α
∣∣E OUT − E LABEL 

∣∣ (5) 

here E OUT , E LABEL is number of isolated object of the predicted 

utput and groundtruth, respectively. The DISO based object func- 

ion leads to large misclassification error if the number of isolated 

bjects between the output and groundtruth is not equal. Other- 

ise, it produces zero misclassification error in detecting the ves- 

el regions. 

.4. Regularization based on Euler characteristic with graph based 

moothing 

The regularizer based on GS using a graph laplacian matrix is 

onsidered the image into two graph laplacians for vessel regions 

nd background area [17] . In GS, smoothness level on vessel re- 

ions ( S) and background area is constructed and can be written 

s 

 = y T (L F + L B ) y = y T L G y (6) 

here L F and L B indicates laplacian graph of vessel and back- 

round, respectively. In [17] , we defined L GS by incorporating GS 

ith binary cross entropy loss, as indicated in the following equa- 

ion 

 GS = L BCE + βS (7) 

In this study, we attempted to evaluate the effectiveness of 

ombining our proposed MISO-based EC with GS, thus utilizing the 

dvantages of both the number isolated objects as well as smooth- 

ess level of vessel regions. The proposed MISO with GS (GISO) is 

efined as 

 GISO = L BCE + αE OUT + βS (8) 

here α and β are scaling parameters to control the regularizer. 

. Experimental setup 

.1. Dataset 

The proposed network structure using EC regularizer for ac- 

urate vessel segmentation is evaluated on DRIVE, STARE, and 

HASEDB1 fundus image datasets. The DRIVE dataset (Canon CR5 

onmydriatic 3CCD camera at 45 ◦ field of view) consisted of 40 

mages with the size 768 × 584 pixels and 8 bits per color channel 

aken with the field of view of approximately 540 pixels in diam- 

ter [3] . The STARE dataset (TopCon TRV-50 fundus camera at 35 ◦

eld of view) included 20 images with the size of 605 × 700 pixel 

ith 24 bits per pixel. The CHASEDB1 dataset included 40 images 

ith the size 999 × 960 pixels. Considering our aim was evaluat- 

ng the proposed segmentation error, manual segmentation by an 

phthalmologist was used as a reference ground truth image. 
86 
.2. Evaluation and performance measures 

The proposed architecture is evaluated on DRIVE, STARE and 

HASEDB1 with 20,19 and 20 for training and 20, 1 and 20 for 

esting, respectively. In order to guarantee that there are enough 

atasets in training the network, each image is divided into a num- 

er of patches with the size 48 × 48 pixels and thus it successfully 

ncreased 4,750 patches on every image. The generalizability of the 

roposed framework on three different data sets is investigated us- 

ng the leave-one-out method. The performance of the deep U-Net- 

ike CNN architecture in segmenting blood vessel connections es- 

ecially the small isolated or thin vessel segmentation is compared 

ith or without our proposed EC-based regularizers. In addition, 

he performance of the network designed with our proposed L MISO 

nd L DISO in preserving the connectivity of the disconnected ves- 

el pixels is compared with L GISO and our previously proposed GS

egularizer in the U-Net-like architecture. 

The performance of the network designed with proposed L MISO 

nd L DISO compared with other methods are validated against 

round truth through three performance measures : sensitivity 

Sn), specificity (Sp) and accuracy (Acc). Sn measures the ability of 

he proposed structure to detect the vessel pixels. Sp measures the 

bility of the structure to find non-vessel pixels. Acc calculates the 

roportion of the predicted vessel pixels that are true vessel pix- 

ls. Furthermore, we used receiver operating characteristic curve to 

ompute the area under curve (AUC) value for the measurement of 

he capability of the proposed system in predicting the vessel pix- 

ls. 

.3. Implementation details 

We set 100 epochs and batch size to 32. The learning rate is 

nitialized to 0.001 and reduced 10 times at every 25 epoch for 

nsuring the convergence of the network. We used Adam as the 

ptimization of the network. The regularization parameters α, and 

are set to 1e-1 and 1e-5, respectively. 

The proposed approach is implemented using Pytorch library 

ith Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz Processor, 32 GB 

f RAM and Nvidia GeForce GTX 1080/PCIe/SSE2 graphic cards. 

. Results and discussion 

The vessel regions with complicated vessel structure shows 

he intersection of the vessels with large and tiny vessels. It is 

hown with some representative examples in Fig. 5 . It demon- 

trated that the U-Net-like network without specific regularizer 

howed poor ability in delineating the vessel with complicated 

tructure. However, if incorporated with our proposed regularizer 

ased on EC, it can accurately identify the detailed vessel junctions 

nd tiny vessels. Table 1 presents the performance comparison of 

ur proposed regularizers in segmenting blood vessel connections, 

specially small isolated or thin vessel segmentation from back- 

round pixels over the architecture without regularizer on different 

atasets. The proposed network with MISO and DISO regularizer 

erformed well in segmenting the disjoint vessel connections bet- 

er than the architecture without regularizer. The CNN architecture 

ithout our proposed regularizer technique misses a lot of small 

r thin vessels, which can also be observed in the qualitative re- 

ults on all dataset. The incapability of the classical BCE-based ar- 

hitecture in detecting thin vessels can also be found out through 

ignificantly low Sn values on all three datasets ( Table 1 ). However, 

he proposed regularization technique efficiently connects the dis- 

oint blood vessels with higher AUC values ( < 95% ), thus demon- 

trating the reliability of the proposed network in diagnosing the 

R accurately ( Fig. 6 ). 
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Fig. 5. Segmentation results of the architecture without and with our proposed reg- 

ularizer for blood vessels on DRIVE (top row), STARE (middle row), and CHASEDB1 

(bottom row) datasets. 
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Table 1 

Performance comparison of the architecture without and 

with our proposed Euler characteristic-based regularizer 

on various datasets. 

Regularizer Sn Sp Acc AUC 

DRIVE 

L BCE 0.7583 0.9826 0.9551 0.9691 

L MISO 0.8463 0.9759 0.9600 0.9824 

L DISO 0.8705 0.9700 0.9578 0.9825 

STARE 

L BCE 0.6524 0.9824 0.9331 0.9370 

L MISO 0.7401 0.9754 0.9403 0.9546 

L DISO 0.7671 0.9683 0.9382 0.9533 

CHASEDB1 

L BCE 0.5812 0.9855 0.9487 0.9567 

L MISO 0.6080 0.9879 0.9533 0.9681 

L DISO 0.7906 0.9770 0.9600 0.9786 

Table 2 

Performance comparisons of the proposed regularizer 

over graph-based smoothing and combined graph-based 

smoothing with isolated object regularizer on various 

dataset. 

Regularizer Sn Sp Acc AUC 

DRIVE 

L MISO 0.8463 0.9759 0.9600 0.9824 

L DISO 0.8705 0.9700 0.9578 0.9825 

L GS 0.7802 0.9854 0.9602 0.9817 

L GISO 0.8621 0.9721 0.9586 0.9825 

STARE 

L MISO 0.7401 0.9754 0.9403 0.9546 

L DISO 0.7671 0.9683 0.9382 0.9533 

L GS 0.7739 0.9650 0.9365 0.9499 

L GISO 0.7096 0.9806 0.9402 0.9548 

CHASEDB1 

L MISO 0.6080 0.9879 0.9533 0.9681 

L DISO 0.7906 0.9770 0.9600 0.9786 

L GS 0.7427 0.9799 0.9583 0.9752 

L GISO 0.7364 0.9817 0.9594 0.9757 
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The performance of the U-Net-like CNN architecture with our 

roposed EC-based regularizers is compared over the GS and the 

ombined EC with GS regularizers ( Table 2 ). The performance 

f the combined GISO regularizer revealed almost similar perfor- 

ance with DISO regularizer, demonstrated that the proposed EC- 

ased regularizer efficiently acquired both the smoothness level 

nd isolated pixel level interpretation. Thus, EC-based regularizer 

hows high potential in learning multiple properties by eliminat- 

ng two different regularizers in diagnosing the blood vessel con- 

ections for DR. The performance of the combined GISO regularizer 

evealed higher performance than the regularizer using only with 

S for vessel detection. It clearly demonstrated that the isolated 

bject regularizer is beneficial in forcing the architecture to learn 

he segmentation region more effectively. 

In addition, to prove the effectiveness of our approach with dif- 

erent α value, we used the MNIH road dataset [29] that has simi- 

ar vessel-like structure as a fundus image. The performance com- 

arison of our approach with baseline in terms of dice coefficient 

core (DCS) explains our approach performs better than the base- 

ine with α value at 0.001 ( Table 3 ). 
ig. 6. Performance comparisons of the architecture without and with our proposed regu

a) DRIVE (b) STARE and (c) CHASEDB1. 

87 
.1. Performance comparison against state-of-the-arts 

The proposed EC-based regularizer network is compared 

f state-of-the-art methods ( Table 4 ). Our proposed approach 

chieved 0.9824 of AUC and 0.9600 of accuracy, which is higher 

han the other existing methods. This can be attributed to the fact 

hat this study considered the branches of blood vessels as almost 

onnected with each other, which means the vessel structure has 

nly one isolated object in which all thin vessels are connected or 

xhibits minimum number of isolated objects. Hence, our proposed 

egularizer produced acceptable results by pushing the network to 

ake the output region consisting minimum number of isolated 

bjects. 
larizer using receiver operating characteristics curve analysis on different datasets. 
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Table 3 

Performance comparison of our proposed 

method with baseline on the MNIH road 

dataset. 

Regularizer Parameter α DCS 

L DICE (Baseline) - 0.8782 

L DICE + αE OUT 0.01 0.8748 

L DICE + αE OUT 0.001 0.8856 

L DICE + αE OUT 0.0001 0.8775 

Table 4 

Performance comparison of the proposed approach with state-of- 

the-art methods. 

Methods Sn Sp Acc AUC 

Azzopardi [30] 0.7655 0.9704 0.9442 0.9614 

Li et al. [31] 0.7569 0.9816 0.9527 0.9738 

Liskowski [32] 0.7763 0.9768 0.9495 0.972 

Fu et al. [12] 0.7603 - 0.9523 - 

Dasgupta et al. [22] 0.7691 0.9801 0.9533 0.9744 

Roychowdhury [33] 0.725 0.983 0.952 0.962 

Chen et al. [34] 0.7426 0.9735 0.9453 0.9516 

Yan et al. [10] 0.7653 0.9818 0.9542 0.9752 

Yan et al. [35] 0.7631 0.982 0.9538 0.975 

Jin et al. [14] 0.7963 0.98 0.9566 0.9802 

Proposed method 0.8463 0.9759 0.9600 0.9824 

Fig. 7. Performance comparison of the proposed method with ground truth in pre- 

dicting small vessels along with the large vessels. (a) input images, (b) prediction 

results (green arrow indicates small vessel detection) (c) ground truths (missing an- 

notation of small vessels compared to the input image). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article) 
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Fig. 8. Noise sensitivity evaluation on DRIVE dataset interms of AUC, accuracy and 

sensitivity. Evaluating Gaussian noise with the ranges of 0.01 to 0.1. 
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Though the qualitative performance of our method is much bet- 

er than the other methods, the quantitative computation based 

n the given ground truth shows almost similar accuracy and AUC 

alue compared with the state-of-the-art methods. This is because 

f the missing annotation of the small vessels in the ground truth 

isleading the measurements and considering the predicted small 

essels as false positives ( Fig. 7 ). Moreover, experts ignored the 

mall vessels due to the low contrast conditions or noise artifacts; 

ur approach proved its efficiency in detecting small vessels even 

n the low quality images as well. 

The other reasons of the proposed network showed lesser Sp 

han the other methods may be the regions such as fovea, opti- 

al disk, and lesion detected in unhealthy fundus image distracted 
88 
he network training. However, including the other class informa- 

ion in the training may suppress the misclassification and could 

mprove the Sp value. Compared with the existing architectures, 

ur proposed architecture is simple and accurate. In [14] , the U- 

et architecture included deformable convolutional block layer in 

ncoder and decoder part increased the computational complexity 

ith large number of dimensions. Whereas, in our approach, we 

imply added one layer to evaluate the EC to calculate the num- 

er of isolated objects from the output of the last layer for accu- 

ate detection of vessel regions. Though our approach proved its 

apability in delineating the small branches and disconnected ves- 

el regions better than the conventional architectures, the EC is es- 

imated by treating pixel-by-pixel cost computational time. Thus, 

here is room for further improvement of the proposed regularizer 

o make it less computational costs. 

.2. Sensitivity to noise evaluation for segmentation 

We conducted experiments to evaluate the sensitivity of the 

egmentation achieved by our method to noise. We used the test 

et of the DRIVE dataset and added Gaussian noise with different 

evels of noise variances (from 0.01 to 0.1). As shown in Fig. 8 , our

pproach delineated the vessels with the AUC values ranging from 

.9824 to 0.9825, accuracy values ranging from 0.9577 to 0.9578 

nd sensitivity values ranging from 0.8693 to 0.8705. The small in- 

reasing variations of detection performance value (0.0 0 01) with 

ncreasing levels of noise is observed, which demonstrates that the 

roposed approach is robust to noise. 

.3. Measure of complexity of learning 

We investigated the measures of complexity of learning of our 

pproach over the other methods during inference stage. We chose 

he computational complexity of deep learning and non deep 

earning methods ( Table 5 ). We compared the computational com- 

lexity of learning between deep learning and non-deep learning 

ethods and found that our approach does not show much differ- 

nces compared with other methods. Furthermore, the measures 

f complexity of learning time of the baseline network is almost 

imilar with ours. It indicates the addition of regularization term 

ith the existing architecture does not tend to increase the execu- 

ion time and hence the complexity of learning of our approach is 

ot sensitive to the performance of detection. 

Though our approach is effective and accurate to identify the 

onnectivity of pixels, it poses the restriction on implementing on 

he tree-like objects. The boundary cannot be well defined if the 

lgorithm encounters any loop-like objects, which is the limitation 

f this study. However, it can be addresed using a suitable regu- 

arizer based on an high-quality ground truth. In future work, we 
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Table 5 

Performance comparison of the measure of complexity of 

learning of the proposed approach with the state-of-the-art 

methods. 

Method Time Architecture 

Azzopardi et al. [30] 10s Non-Deep learning 

Staal et al. [3] 15m Non-Deep learning 

Roychowdhury [33] 2.5s Non-Deep learning 

Liskowskiet al. [32] 92s CNN 

Luo et al. [36] 31.17s SIFCN 

Fu et al. [12] 1.3s DeepVessel 

Tan et al. [37] 10m CNN 

Jin et al. [14] 15.3s DUNet 

U-Net (Baseline) 23s U-Net 

Proposed Method 23s U-Net + EC Regularizer 
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lan to extend the proposed regularizer using the graph theory ap- 

roach to estimate the number of isolated objects on image. Fur- 

hermore, it would be efficient to incorporate the vessel regions 

nd lesions segmentation in one end-to-end network. This study 

lso suggested that the proposed segmentation approach may be 

seful in non-medical applications that contains vessel-like struc- 

ures, such as palmprints segmentation for biometric systems. 

. Conclusion 

This study proposed EC-based regularizers to estimate the num- 

er of isolated objects in U-Net-like deep CNN architecture for de- 

ineating small retinal vessel connections on a fundus image. The 

roposed EC-based MISO and DISO regularizers approach demon- 

trated improvement in retaining the width of the small and dis- 

ointed vessel connectivities through its high AUC values. Our ap- 

roach can segment more number of vessels and can reconnect 

ll isolated vessels, which is superior than the performance of the 

aseline architecture not using the proposed regularizer. Further- 

ore, it also demonstrated that the isolated objects regularizer is 

eneficial in forcing the architecture to learn the smoothness and 

solated pixel level of interpretation of vessel regions. Compared 

ith other state-of-the-art methods, the EC-based regularizer im- 

roved the performance in localizing and connectivity between the 

ixels of the vessel regions with high acceptable value of AUC 

alue. These findings indicate that the proposed system could be 

 highly reliable detection system for DR. 
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