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ABSTRACT

%mentatian of retinal blood vessels is important for the analysis of diabetic retinopathy (DR). Existing
methods do not prioritize the small and disconnected vessels for DR. With the aim of paying attention to
the small and disconnected vessel regions, this study introduced Euler characteristics (EC) from topology
to calculate the number of isolated o s on segmented vessel regions, which is the key contribution
of this study. In addition, we utilized the number of isolated objects in a U-Net-like deep convolutional

MSC: neural network (CNN) architecture as a regularizer to train the network for improving the connectivity
41405 between the pixels of the vessel regions. The proposed network performance of the regularizer based on
41A10 EC in reconstructing vessel regions is compared over the network without our regularizer. Furthermore,
65D05 the capacity of the proposed regularizer approach in enhancing the smoothness and pixel connectivity of
. the vessels is compared with graph-based smoothing (GS) and combined GS with isolammecls (GISO)
Keywords: regularizers for delineating blood vessel regions. The proposed approach achieved the area under the

curve value of 0982, which is much higher than the state-of-the-arts, and thus it is suggested that the
proposed system could support accuracy and reliability in decision—makigtr DR detection.
s
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tation of retinal blood vessels, based on gtern recognition, and
supervised and unsupervised machine learning, has been success-
fully proposed [4-6]. us studies in recent times have reported
improve performance of blood vessel seg[altation based on deep
learning techniques [7-13]. Several U-Net models based on convo-

1. Introduction

Diabetic retinopathy (DR) is one of the causes of visual impair-
ment in aging population and signiﬁes@increased risk of coro-
nary heart disease [1]. As it involves changes in the shape and
structure of blood vessels in the fundus, al impairment is of-

ten detected by analyzing fundus images. Fundus images are color
images that represent the inner surface of the human eye and are
often used by doctors to study at the retina and the anatomical
components of the eye. Therefore, accurate identification of large
and small retinal vessels with diameters of less than a pixel can
be used as an early bio-marker for the diagnosis of DR [23].
However, fundus images are affected by noise. Moreover, ex-
amining the small blood vessel difficult and time-consuming.
Hence, automatic characterizing of retinal blood vessels is impor-
tant for the detection of DR. To this end, computer-aided segmen-

‘ @le by Associate Editor Michele Nappi, Ph.D.
* Corresponding author.

?-muif addresses: lukman-hakim@hiroshima-uac.jp (L. Hakim),
itha@nagasaki-uacjp (MS. Kavitha), cbasemaster@gmailcom (M. Yudistira),

tkurita@hiroshima-u.acjp (T. Kurita).

Imps:.'.'dui.ur_g.'1U.]LHLi.'|.p.1Lruc.2U21.Ub.U23
0167-8655/© 2021 Elsevier B.V. All rights reserved.

lutional neural netpks (CNNs) have been developed by modify-
ing the number of layers in the encoder and decoder architectures
and have achieved better results for retinal blood vessel segmen-
tation [9,14-16]. However, these approaches considered large and
medium vessels as it appears in the ground truth. They failed to
characterize the damaged tiny or small vessels, and hence unreli-
able diagnosis may occur. In this study, we aimed to delineate, in
addition to the thick vessels, damaged tiny or small vessels that do
not appear in the ground truth but appear in the original fundus
images.

To address the small vessel connectivity problem, authors in
|17] introduced a graph-based smoothing (GS) regularizer that
pushes the network td@Ronsider small vessel. The GS regularizer
hold smoothness level by calculating graph laplacian: een the
vessel and surrounding background area. In contrast, in thi v,
we proposed a different approach to penalize the network to pay
more attention to small vessels by utilizing the number of isolated
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(a) _
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Fig. 1. [llustration of the isolated object in vessel segmentation task. (a) input fun-
dus image. (b) groundtruth segmentation of the vessels. (c) result of the baseline
without regularizer. @M proposed isolated object regularizer (red color arrow
dicates retaining the width of the small and disjointed vessel connectivities). {For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

objects, as shown in the Fig. 1. Furthermore, we observe that most
of the existing architectures fail to accurately detect the vessel con-
nections especially on the thinner and small branches of the ves-
sels (Fig. 1c).

However, for accurate segmentation, it important to preserve
the vanished blood vessels as isolated objects so as to use them for
finding entire vessel connections. Hence, this study is attempted to
trace the retinal vessel connections using Euler characteristics (EC).
The EC is an essential topological invariant for realizing the num-
ber of components and number of enclosed cavities to utilize the
EC as a demonstration of vessel connectivi 8,19].

We introduced a regularizer based on EC to minimize the num-
ber of isolatey jects, especially in the small branches and tiny
retinal vessel regions. The proposed method is based on the crite-
rion of a vessel structure that is fully connected or if consisting of
minimal number of isolated objects.

Specifically, we proposed two regularizers, minimum number of
isolated objects (MISO) and differences of number of isolated ob-
jects (DISO) between predicted and true segmentation groundtruth
based on EC, to delineate@r vessel regions. We developed a U-
MNet-like CNN architecture to evaluate the performance of the pro-
posed regularizers in delineating small vessel connections. The in-
teresting key point in this study is implementing ma?matical
topology approach in the neural network architecture. The main
contribution of this study is summarized as follows : (i) We pro-
posed EC d regularizers to estimate the number of isolated ob-
jects, (ii) compared the architecture performance of the proposed
MISO an O regularizers with the architecture without regular-
izer, (iii) compared the performance of our proposed regularizers
with GS and combined GS plus isolated objects (GISO) regularizers
in segr ing the vessel connections, and (iv) analyzed the perfor-
mance of the proposed approach with the state-of-the-art method
for recognizing small blood vessel regions.
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2. Related works

Image segmentation ﬁys an important role in medical imag-
ing applications. In deep learning domain, segmentation area has
been widely utilized to support medical image analysis [20,21]. In
|22], the authors developed a multi-label method based on super-
vised structured for the segmentation of retinal vessels. They ap-
plied pre-processing methods before feeding the image into the
network. Ortiz et al. | 7], in contrast, proposed a deep CNN that ig-
nored pre-processing steps and directly used raw RGB image as in-
put. In [8], the smntation network was divided into two steps:
using multiscale and using fully connected conditional ran-
dom fields (CRFs).

hick and thin vessel segmentation were considered using
segment-level loss and pixel-wise loss [10]. Similarly, deep ves-
sel segmentation was proposed that achieved high quality vessel
probability map using a CNN network and a CRFs layer [12]. The
fully CNN network generates probability maps, whereas carry out
segmentatior ng dense global pixel correlation. The authors in
|13] utilized stationary wavelet transform with a multiscale fully
connected CNN to adapt with the varying width and direction of
the vessel structure in the retina. However, aforementioned archi-
tectures used multiple steps that increas misclassification error
and computational complexity. Several medic?mﬁge segmenta-
tion methods using U-Net-based CNNs have been proposed for
solvi¥i@ the segmentation problem and reducing the error rate [16].
The U-Net structure takes care of the sampling that is required to
check class-imbalance factors. Furthermore, it is capable of scan-
ning an entire image in just one forward pass, which enables it to
consider the full context of the image [23 24|. Hence, this study
also considered using U-Net-like CNN architecture to evaluate the
efficiency of the proposed regularizers.

Generally, the learning process of the neural network is maxi-
mized using task-specific regularization technigues to avoid over-
fitting and push the sparsity of the network. The authors in
|25] propos regularizer with scribbles, combining partial cross
entropy and normalized cut for weakly-supervised segmentation.

In [17], the authors proposed graph-based smoothing regular-
izer that treated the ork paying attention to small and tiny
vessel connections. It treated the image as two graphs by calcu-
lating the graph laplacians on the vessel region and background
regions. In contrast, in this study we proposed MISO and DISO reg-
ularizers based on EC, which calculate the number of isolated ob-
jects for accurate segmentation of vessel regions.

3. Proposed methodology

This study proposed EC-based regularizers to estimate the num-
ber of isolated objects in U-Net-like deep CNN architecture for de-
lineating small retinal assel connections on a fundus image. Be-
fore training process, we enhanced the dataset with some pre-
processing steps. The i is converted into grayscale followed by
data normalization and contrast-limited adaptive histogram equal-
ization (CLAHE). We applied normalization to keep the image into
the same scale and CLAHE technigue to enhance the contrast of
the grayscale image.

3.1. Constructing Euler characteristics for the number of isolated
objects

Euler chara stic (EC) is a global topology, which invariant to
all topological transformations such as rotation and scale. Gmp
ally, the EC of a two dimensional image is considered to be the
number of connected component minus the number of holes. The
objective function of the EC is computed based on the relationship
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Fig. 2. An example of constructing Euler characteristics using mask pattems (a) il-
lustration showing object (black) pixels based on 8 x 8 neighborhood pixels. (b) il-
lustration calculating Euler characteristics for the number of isolated object accord-
ing to the number of vertices (F), sides (5), and faces (F) from object pixels (a).

(a)

(b)

Fig. 3. Two ways of constructing Euler characteristics using mask patterns for tri-
angulation. (a) and (b) show examples of triangulation in opposite direction with
each other.

between the number of vertices (P), sides (5), and faces (F) :
EC=F—-S+P (1)

However, in the case of simple polygon without holes, the EC is
equal to one. Here we briefly explained how to define the EC effec-
tively by constructing vertices, sides, and faces on 8 = 8 neighbour-
hood pixels connectivi sing simple mask patterns, as shown in
Fig. 2. It calculates EC directly related to the number of isolated
objects. The EC on the binary image based on 8 x 8 neighbourhood
pixels can be constructed as follows; 1) transforming object pixel
in the image to a vertice, 2) adding a side between q vertices
with 8-connectivity without a cross side, 3) summing the number
of vertices, 4) summing the number of sides, 5) summing the num-
be aces or triangles, and finally, 6) calculating EC using Eq. (1).
As can be seen in Fig. 2, EC estimated the number of isolated ob-
jects as 2, with number of vertices, sides, and faces as 19, 33, and
16 respectively (EC=F -S+P=16-33 +19 = 2).

Furthermore, to address the invariant problem in preserving the
vessel connections, we considered constructing vertices, sides, and
faces in two different directions. It can be briefly explained us-
ing mask patterns on a 8 x 8 neighbourhood pixels connectivity, as
shown in Fig. 3a and b. Then EC is estimated as EC; =F, - 5, + P
and EG; = K — 53 from Fig. 3a and b, respectively, which is di-
rectly related to the number of isolated objects. Finally, the total
number of isolated objects E is considered by computing the aver-
age between these two directions, which is defined as

ECy + EC
P B} (2)
2
3.2. Network implementation

The regularizer layer based on EC for small vessel connections
is evaluated using U-Net-like deep CNN structure. The proposed
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Fig. 4. Proposed architecture using Euler characteristics regularizer.

architecture contains an encoder and @mﬂer module, as s
on Fig. 4. The encoder module includes three blocks. First, two
convolutional layers followed by ReLU and max-pooling layer each

ha 32 feature maps. Second, two convolutional layers followed
by RelLU and max-pooling layer with 32 and 64 featu ps, re-
spectively. Third, two convolutional layers each having 128 feature

maps. The decoder module contains four convolutional layers fol-
lowed by RelU and one convolution layer without RelLU. The out-
put from decoder is upsampled with the factor of 2. After deconvo-
lution the feature maps were contenated with the encoder lay-
ers using skip connections. Then pixel-based probability maps and
predictions are generated by a sigmoid classifier function. Finally,
after the sigmoid function we employed EC.
By following [26-28], we calculated EC and incorporated this
into the network using one layer. Let us consider input image
=BMN and T {0, 1}V be the corresponding groundtruth,
with 1 indicating pixels in the vessel and 0 is indicating pixels
in the background area. And s consider f be a U-Net param-
eterized by weight W. Bllen the output image of the network is
¥ = f(X.W) <[0, 1N, The binary cross entropy (BCE) loss is used
for calculating the vessel region segmentation, which is defied as

Lpcp = Zf["o‘g(ﬁ‘*‘ (1- fl')"og{] —¥i)

i=1

(3)

Although U-Net predicts the vessel region, the BCE loss treats
every pixel independently. Therefore, it fails to estimate the topo-
logical characteristics such as the number of isolated objects on a
vessel region. It can be clearly observed as the misclassification of
small vessel regions in Fig. 1. This could be accounted to the fact
that some pixels exhibit low costs in terms of BCE loss, and thus
have large impact on the topology of the predicted results. To ad-
dress this problem, we proposed a regularizer based on EC that
penalized BCE if have many isolated objects comprises the target
task.

Therefore, we incorporated EC into the?work that retrieved
the number of isolated object (E) through the number of vertices,
sides, and faces of the segmented regions ?g the Egs. (1) and
(2). We used E as a regularizer term with the cross entropy cost
function to train the proposed network for precisely delineating
the small vessel connections. It forced the network to minimize the
number of isolated objects by minimizing the misprediction error
there are large number of isolated objects, and thus we named it
the MISO regularizer. It is defined as
(4)

Lyiso = Lpce + @ Equr
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where « is a scaling parameter to control the regularizer and Eqr
represents the number of isolated objects in the segmentation out-
put.

3.3. Regularization based on the differences of number of isolated
objects between prediction and groundtruth

In this study, we also investigated the regularizer based on
the differences of number of isolated objects between output and
groundtruth (DISO) in delineating the vessel regions. Different
from MISO, it forces the number of isolated objects between the
output and the groundtruth to be equal or more closer. It is de-
fined as

Lpiso = Lece + @ |Equt — Epager (5)

where Egyt. Epagep 1S number of isolated object of the predicted
output and groundtruth, respectively. The DISO based object func-
tion leads to large misclassification error if the number of isolated
objects between the output and groundtruth is not equal. Other-
wise, it produces zero misclassification error in detecting the ves-
sel regions.

3.4. Regularization based on Euler characteristic with graph based
smoothing

The regularizer based on G¥Mlsing a graph laplacian matrix is
considered the image into two graph laplacians for vessel regions
and background area [17]. In GS, smoothness Ievﬂn vessel re-
gions (5) and background area is constructed and can be written
as

S=y"(Lr+ L)y =y"Ley (6)

where [ and Lg indicates laplacian graph of vessel and back-
gmulg respectively. In [17], we defined L. by incorporating GS
1

with Dinary cross entropy loss, as indicated in the following equa-
tion
Les = Lpce + BS (7)

3
In this study, we attempted to evaluate the effectiveness of
combining our proposed MISO-based EC with G5, thus utilizing the
advantages of both the number isolated objects as well as smooth-
ness level of vessel regions. The proposed MISO with GS (GISO) is
defined as

so = Lace + @Eour + BS (8)

where & and f are scaling parameters to control the regularizer.

9 Experimental setup
4.1. Dataset

The EFRposed network structure using EC regularizer for ac-
curate vessel segmentation is evaluated on DRIVE, E, and
CHASEDB1 fundus image datasets. The DRIVE dataset (Canon CR5
nonmydriatic 3CCD camera at 45° field of view) consisted of 40
images with the size 768 x 584 pixels and 8 bits per color channel
taken with the field of view§Ehpproximately 540 pixels in diam-
eter [3]. The STARE dataset (TopCon TRV-50 fundus camera at 35°
field of view) included 20 images with the size of 605 = 700 pixel
with 24 bits per pixel. The CHASEDB1 dataset included 40 images
with the size 999 x 960 pixels. Considering our aim was evaluat-
ing the proposed segmentation error, manual segmentation by an
ophthalmologist was used as a reference ground truth image.
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4.2, Evaluation and performance measures

% proposed architecture is evaluated on DRIVE, STARE and
CHASEDB1 with 20,19 and 20 for training and 20, 1 and 20 for
testing, respectively. In order to guarantee that there are enough
datasets in training the network, each image is divided into a num-
ber of patches with the size 48 x 48 pixels and thus it succe Slully
increased 4,750 patches on every image. The generalizability of the
proposed framework on three different data sets is investigated us-
ing the leave-one-out method. The performance of the deep U-Net-
like CNN architecture in segmenting blood vessel connections es-
pecially the small isolated or thin vessel segmentation is compared
with or without our proposed EC-based regularizers. In addition,
the performance of the network designed with our proposed Lyysp
and Lpsp in preserving the connectivity of the disconnected ves-
sel pixels igEAmpared with Lgsp and our previously proposed GS
regularizer in the U-Net-like architecture.

The performance of the network designed with proposed Lyso
and Lpsp compared with other methods are validat@® against
ground truth through three performance measures : sensitivity
(Sn), specificity (Sp) and accuracy (Acc). Sn measures the ability of
the proposed structure to detect the vessel pixels. Sp measures the
ability of the structure to find non-vessel pixels. Acc calculates the
proportion of the predict ssel pixels that are true vessel pix-
els. Furthermore, we used receiver operating characteristic curve to
compute the area under curve (AUC) value for the measurement of
the capability of the proposed system in predicting the vessel pix-
els.

4.3. Implementation details

3
We set 100 epochs a.nd batch size to 32. The learning rate is
initialized to 0.001 and reduced 10 times at every 25 epoch for
ensuring the convergence of the network. We used Adam as the
optimization of the network. The regularization parameters «, and
B ﬂ set to le-1 and 1le-5, respectively.
e proposed approach is implemented using Pytorch library
with Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz Processor, 32 GB
of RAM and Nvidia GeForce GTX 1080/PCle/SSE2 graphic cards.

5. Results and discussion

The vessel regions with complicated vessel structure shows
the intersection of the vessels with large and tiny vessels. It is
shown with some representative examples in Fig. 5. It demon-
strated that the U-Net-like network without specific regularizer
showed poor ability in delineating the vessel with complicated
structure. However, if incorporated with our proposed regularizer
based on EC, it :ﬁcurately identify the detailed vessel junctions
and tiny vessels. Table 1 presents the performance comparison of
our proposed regularizers in segmenting blood vessel connections,
especially small isolated or thin vessel segmentation from back-
ground pixels over the architecture without regularizer on different
datasets. The proposed network with MISO and DISO regularizer
performed well in segmenting the disjoint vessel connections bet-
ter than the architecture without regularizer. The CNN architecture
without our proposed regularizer technique misses a lot of small
or thin vessels, which can also be observed in the qualitative re-
sults on all dataset. The incapability of the classical BCE-based ar-
chitecture in detecting thin vessels can also be found out through
significantly low 5n values on all three datasets (Table 1). However,
the proposed regularization technique efficiently connects the dis-
joint bl vessels with higher AUC values (< 95%), thus demon-
strating the rel lity of the proposed network in diagnosing the
DR accurately (Fig. 6).
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Fig. 5. Segmentation results of the architecture without and waur proposed reg-
ularizer for blood vessels on DRIVE (top row), STARE (middle row), and CHASEDE1
(bottom row) datasets,

The performance of the U-Net-like CNN architecture with our
proposed EC-based regularizers is compared over the GS and the
combined EC with GS regularizers (Table 2). The performance
of the combined GISO regularizer revealed almost similar perfor-
mance with DISO regularizer, demonstrated that the proposed EC-
based regularizer efficiently acquired both the smoothness level
and isolated pixel level interpretation. Thus, EC-based regularizer
shows high potential in learning multiple properties by eliminat-
ing two different regularizers in diagnosing the blood vessel con-
nections for DR. The performance of the combined GISO regularizer
revealed higher performance than the regularizer using only with
GS for vessel detection. It clearly demonstrated that the isolated
object regularizer is beneficial in forcing the architecture to learn
the segmentation region more effectively.

In addition, to prove the effectiveness of our approach with dif-
ferent o value, we used the MNIH road dataset [29] that has simi-
lar vessel-like structure as a fundus image. The performance com-
parison of our approach with baseline in terms of dice coefficient
score (DCS) explains our approach performs better than the base-
line with o value at 0.001 (Table 3).
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Table 1

Performance comparison of the architecture without and
with our proposed Euler characteristic-based regularizer
on various datasets.

Regularizer  Sn Sp Acc AlC
DRIVE
Lycy 0.7583 09826 0.9551  0.9691
Lysa 0.8463 09759 09600 09824
Lo 0.8705 09700 09578 09825
STARE
Lycy 0.6524 09824 09331 09370
Lysa 07401 09754 09403 09546
Lo 07671 09683 09382 09533
CHASEDE1
Lycy 0.5812  0.9855 0.9487  0.9567
Lysa 0.6080 09879 09533 09681
Lo 07906 09770 09600 09786
Table 2

Perfum:e comparisons of the proposed regularizer
over graph-based smoothing and combined graph-based
smoothing with isolated object regularizer on various

dataset.
Regularizer  Sn Sp Acc AlC
DRIVE
Lysa 0.8463 09759 09600 09824
Lo 0.8705 09700 09578 09825
Lgs 0.7802 09854 09602 09817
Laso 0.8621 09721 09586 09825
STARE
Lysa 0.7401 09754 09403  0.9546
Lo 07671 09683 09382 09533
Lgs 07739 09650 09365  0.9499
Laso 0.7096 09806 09402 09548
CHASEDE1
Lysa 0.6080 09879 09533 09681
Lo 07906 09770 09600 09786
Lgs 0.7427 09799 09583 09752
Laso 0.7364 09817 09594 09757

5.1. Performance comparison against state-of-the-arts

he proposed EC-based regularizer network is compared
of state-of-the-art methods (Table 4). Our proposed approach
achieved 0.9824 of AUC and 0.9600 of accuracy, which is higher
than the other existing methods. This can be attributed to the fact
that this study considered the branches of blood vessels as almost
connected with each other, which means the vessel structure has
only one isolated object in which all thin vessels are connected or
exhibits minimum number of isolated objects. Hence, our proposed
regularizer produced acceptable results by pushing the network to
make the output region consisting minimum number of isolated
objects.

100 — 100 100
—
0ss 0ss (14
0se use 090
s u M
E oss E oss E o8s
3 2 3
‘i 080 ‘i 080 ‘E 060
g 075/ 075 & 075
] £ =
0t ot 070
065 —— Withaut Regularizer = 09651 065 —— Withous Regularizer = 0.9370 065 —— Wishout Regularizer = 0.9567
Proposed Repadaraer « 0 9824 Froposed Regelarizer = 09546 Proposed Regulaniaer = 0.9681
st 08l 060
000 005 010 QIS 020 025 030 035 040 000 005 010 0I5 020 025 030 035 040 000 005 010 0I5 020 025 030 035 040
False positive rate False positive rate False positive rate
(a) (b) (c)

. Performance comparisons of the architecture without and with our proposed regularizer using receiver operating characteristics curve analysis on different datasets.

\a; !RIVE (b) STARE and (c) CHASEDB1
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Faae 2

Performance comparison of our proposed
method with baseline on the MNIH road

dataset.
Regularizer Parameter o« Des
Lpice (Baseline) - 0.8782
Loy + aEgur 001 0.8748
Lpwce + aEgur 0001 0.8856
Lpwce + aEgur 0.0001 0.8775

%e‘l

Performance comparison of the proposed approach with state-of-

m methods.
ethods

Sn Sp Acc AlC

Azzopardi [30] 0.7655 09704 09442 09614
Lietal [31] 0.7569  0.9816 09527 09738
Liskowski [32] 07763 09768 09495 0972
Fuet al. [12] 0.7603 - 09523 -
Dasgupta et al. [22] 07691  0.9801 09533 09744

chowdhury [33] 0725 0983 0952 0962

en et al. [34] 07426 09735 09453 09516
Yan et al. [10] 0.7653  0.9818 09542 09752
Yan et al. [35] 0.7631  0.982 09538 0975
Jin et al. [14] 0.7963  0.98 09566 09802

Proposed method 0.8463 09759 09600 09824

Fig. ﬁerﬁ)rmance comparison of the proposed method with ground truth in pre-
dicting small vessels along with the large vessels. (a) input images, (b) prediction
results {green arrow indicates small vessel detection) (¢) g truths (missing an-
notation of small vessels compared to the input image). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article)

Though the qualitative performance of our method is muc t-
ter than the other methods, the guantitative computation d
on the given ground truth shows almost similar accuracy and AUC
va ompared with the state-of-the-art methods. This is because
of the missing annotation of the small vessels in the ground truth
misleading the measurements and considering the predicted small
vessels as false positives (Fig. 7). Moreover, experts ignored the
small vessels due to the low contrast conditions or noise artifacts;
our approach proved its efficiency in detecting small vessels even
in the low quality images as well.

The other reasons of the proposed network showed lesser Sp
than the other methods may be the regions such as fovea, opti-
cal disk, and lesion detected in unhealthy fundus image distracted

88
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Fig. 8. Moise sensitivity evaluation on DRIVE dataset interms of AUC, accuracy and
sensitivity. Evaluating Gaussian noise with the ranges of 0,01 to 0.1

the network training. However, including the other class informa-
tion in the training may suppress the misclassification and could
improve the Sp value. Compared with the existing architectures,
our proposed architecture is simple and accurate. In [14], the U-
Net architecture included deformable convolutional block layer in
encoder and decoder part increased the computational complexity
with large number of dimensions. Whereas, in our approach, we
simply added one layer to evaluate the EC to calculate the num-
ber of isolated objects from the output of the last layer for accu-
rate detection of vessel regions. Though our approach proved its
capability in delineating the small branches and disconnected ves-
sel regions better than the conventional architectures, the EC is es-
timated by treating pixel-by-pixel cost computational time. Thus,
there is room for further improvement of the proposed regularizer
to make it less computational costs.

5.2, Sensitivity to noise evaluation for segmentation

@ conducted experiments to evaluate the sensitivit the
segmentation achieved by our method to noise. We used the test
set of the DRIVE dataset and added Gaussian noise with different
levels of noise variances (from 0.01 to 0.1). As shown in Fig. 8, our
approach delineated the vessels with the AUC values ranging from
09824 to 09825, accuracy values ranging from 0.9577 to 0.9578
and sensitivity values ranging from 0.8693 to 0.8705. The small in-
creasing variations of detection performance value (0.0001) with
increasing levels of noise is observed, which demonstrates that the
proposed approach is robust to noise.

5.3. Measure of complexity of leaming

We investigated the measures of complexity of learning of our
approach over the other method ring inference stage. We chose
the computational complexity of deep learning and non deep
learning methods (Table 5). ompared the computational com-
plexity of learning between deep learning and non-deep learning
methods and found that our approach does not show much differ-
ences compared with other methods. Furthermore, the measures
of complexity of learning time of the baseline network is almost
similar with ours. It indicates the addition of regularization term
with the existing architecture does not tend to increase the execu-
tion time and hence the complexity of learning of our approach is
not sensitive to the performance of detection.

Though our approach is effective and accurate to identify the
connectivity of pixels, it poses the restriction on implementing on
the tree-like objects. The boundary cannot be well defined if the
algorithm encounters any loop-like objects, which is the limitation
of this study. However, it can be addresed using a suitable regu-
larizer based on an high-quality ground truth. In future work, we
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ﬁes

Perl'ﬂrmﬂ comparison of the measure of complexity of
learning of the proposed approach with the state-of-the-art

methods.
gm Time @itecture
opardi et al. [30]  10s n-Deep learning
Staal et al [3] 15m MNon-Deep learning

Roychowdh 3] 255 MNon-Deep learning
Liskowskiet al. [32] 925 CNN

Luo et al. [36] 31.17s  SIFCN

Fuet al. [12] 135 DeepVessel

Tan et al. [37] 10m CNN

Jin et al [14] 15.3s DUMet

U-Net (Baseline) 23s U-Net

Proposed Method 23s U-Net+EC Regularizer

plan to extend the proposed regularizer using the graph theory ap-
proach to estimate the number of isolated objects on image. Fur-
thermore, it would be efficient to incorporate the vessel regions
and lesions segmen n in one end-to-end network. This study
also suggested that proposed segmentation approach may be
useful in non-medical applications that contains vessel-like struc-
tures, such as palmprints segmentation for biometric systems.

6. Conclusion

This study proposed EC-based regularizers to estimate the num-
ber of isolated objects in U-Net-like deep CNN architecture for de-
lineating small retinal vessel connections on a fundus image. The
proposed EC-based MISO and DISO renlarizers approach demon-
strated improvement in retaining the width of the small and dis-
jointed Esel connectivities through its high AUC values. Our ap-
proach can segment more number of vessels and can reconnect
all isolated wessels, which is superior than the performance of the
baseline architecture not using the proposed regularizer. Further-
more, it also demonstrated that the isolated objects regularizer is
beneficial in forcing the architecture to learn the smo ss and
isolated pixel level of interpretation of vessel regions. Compared
with other state-of-the-art methods, the EC-based regularizer im-
proved the performance in localizing and connectivity between the
pixels of the wessel regions with high acceptable value of AUC
value. These findings indicate that the proposed system could be
a highly reliable detection system for DR.
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