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Abstract—The task of image segmentation is to classify
each pixel in the image based on the appropriate label.
Various deep learning approaches have been proposed for
image segmentation that offers high accuracy and deep
architecture. However, the deep learning technique uses a
pixel-wise loss function for the training process. Using pixel-
wise loss neglected the pixel neighbor relationships in the
network learning process. The neighboring relationship of
the pixels is essential information in the image. Utilizing
neighboring pixel information provides an advantage over
using only pixel-to-pixel information. This study presents
regularizers to give the pixel neighbor relationship in-
formation to the learning process. The regularizers are
constructed by the graph theory approach and topology
approach: By graph theory approach, graph Laplacian is
used to utilize the smoothness of segmented images based
on output images and ground-truth images. By topology
approach, Euler characteristic is used to identify and min-
imize the number of isolated objects on segmented images.
Experiments show that our scheme successfully captures
pixel neighbor relations and improves the performance of
the convolutional neural network better than the baseline
without a regularization term.

Keywords—neighboring, pixel, deep learning, graph,
topology.

I. INTRODUCTION

Image segmentation is an important task in the field
of computer vision. The task of image segmentation is to
classify each pixel in the image based on the appropriate
label. Image segmentation applications have been widely
used, such as medical imagery (for example, Retinal
Vessel Segmentation[3], Tumor Segmentation[4], Breast
Cancer Detection[5]), Autonomous Vehicles (Example:
Vehicle Detection[6], Pedestrian Detection[7]), Counting
Objects[8], and Farm Industry[9]. Several Image segmen-
tation techniques have been developed, such as threshold-
ing, k-means clustering, and graph cut methods.

Recently, many deep learning techniques have been
developed for image segmentation that offers high ac-
curacy and deep architecture[1][2]. However, the deep
learning technique uses a pixel-wise loss function for the
training process. Using pixel-wise loss neglected the pixel
neighbor relationships in the network learning process.
The neighboring relationship of the pixels is essential
information in the image. Utilizing neighboring pixel
information provides an advantage over using only pixel-
to-pixel information.

Fig. 1. Illustration of graph based smoothing regularizer (GBS)
architecture.

Fig. 2. Representation of graph between two regions, a) Ground-
truth image, b) graph generated from background region and c) graph
generated from foreground region.

This study presents regularizers to provide the pixel
neighbor relationship information to the learning process.
We have proposed three regularizers are constructed by
the graph theory approach and topology approach. Firstly,
we introduced a Graph-Based Smoothing Regularizer
(GBS). The GBS considers the graph laplacian from the
foreground and background regions and then combines it
with the CNN baseline loss function. The combination
of regularizers allows the network to learn the pixel
relationship efficiently. The illustration of GBS is shown
in Fig. 1.

Secondly, we introduced Graph Laplacian Regular-
ization based on the Differences of Neighboring Pixels
(GLRDN) by constructing graph laplacian from pre-
diction and ground-truth images. A graph uses pixels
as vertices and edges defined by the ”differences” of
neighboring pixels instead of similarities between pixels.
A graph uses pixels as vertices and edges defined by the
”differences” of neighboring pixels instead of similarities
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Fig. 3. Architecture of Graph Laplacian regularizer based on differ-
ences of neighboring pixels.

Fig. 4. Simple Illustration of Euler Characteristic Calculation.

between pixels. The basic idea is, if pair-wise pixels
belonging a similar class, the differences are small. Other-
wise, the differences are significant if pair-wise pixels are
belonging a different class. The illustration of GLRDN is
shown as Fig 3. Thirdly, we proposed a regularizer based
on Euler Characteristic (EC) in the segmented image. EC
is a topological property of a shape in an image that
can identify the number of objects in the image. This
EC-based regularizer is used to identify the number of
objects in the segmentation results. Then this information
is added to the objective function so that the network can
minimize the number of isolated objects in the segmented
image.

To evaluate the effectiveness of the proposed methods,
we implemented the regularizers on retinal blood vessels
segmentation in fundus images and compared them with
the baseline CNN without regularizers.

II. METHODS

This section explains three proposed regularizers we
have done: GBS, GLRDN, and EC Regularizer.

A. Graph Based Smoothing (GBS)

The proposed graph-based smoothing regularizer is
based on the relationship between pixels[10]. The graph
approach is used to obtain adjacency graphs and diago-
nal matrices from the relationship information between
pixels. The graph can be transformed into a matrix by

counting the edges between the two adjacent vertices.
The two vertices can be said to be adjacent if an edge
connects it. Then from this matrix, the Graph Laplacian
is defined.

The GBS defines two different graphs for the fore-
ground region and background region. As shown in Fig.
2, let us consider the set of training samples X =
(xm, tm) |m = 1, . . . ,M where xm is a mth input image
and tm is the mth target image, and M is number of
training samples. In deep convolutional neural network,
the network is trained to predict the output image ym from
the mth input image xm. For each edge of foreground
(jF , kF ) ∈ EF and background (jB , kB) ∈ EB of the
graph, the similarity β(jF ,kF ) and β(jB ,kB) is defined as

β(jF ,kF ) = 1− |tjF − tkF
| (1)

β(jB ,kB) = 1− |tjB − tkB
| (2)

We introduced the regularization term for smoothing
S based on foreground region F and background region
B as∑
(jF ,kF )∈GF

βjF ,kF
(yjF − ykF

)2 = yT (DF−AF )y = yTLF y

(3)∑
(jB ,kB)∈GB

βjB ,kB
(yjB − ykB

)2 = yT (DB−AB)y = yTLBy

(4)
where, LF and LB is Graph Laplacian for foreground re-
gion and background region, respectively. The adjacency
and diagonal matrices is defined as following(

AF = β(jF ,kF ), DF =
∑N

jF=1 βjF ,kF

AB = β(jB ,kB), DB =
∑N

jB=1 βjB ,kB

)
(5)

Graph based smoothing regularizer Rgbs can be writ-
ten as

Rgbs = yT (LF + LB)y = yTLGy (6)

In these experiments, we use the Binary Cross Entropy
(BCE) loss as objective function. The BCE loss is given
as below:

Ebce =

M∑
i

ti log(yi) + (1− ti) log(1− yi) (7)

where t and y is groundtruth and output, respectively.

The objective function O applied in this study is the
summation of the binary cross entropy of each label
with the regularization term using graph based smoothing,
which is defined as

O1 = Ebce + λRgbs (8)

Parameter λ is used to control the effect of the
regularizer.

O2 = Ebce + λRglrdn (9)



Fig. 5. Comparison results of blood vessel segmentation between our
proposed regularizer and without proposed regularizer on the DRIVE
(top row) and STARE (bottom row) datasets.

B. Graph Laplacian based on Differences of Neighboring
Pixels (GLRDN)

To define the GLRDN, we consider to utilize the
differences of the differences of neighboring pixels be-
tween the target image and estimated image[12]. Let
assume target image tm and the estimated images ym,
the GLRDN define as

Rglrdn(tm,ym) =
∑

(i,j)∈E

{(tmi − tmj)− (ymi − ymj)}2

=
∑

(i,j)∈E

(∆tijm −∆yijm)2

= (∆tm −∆ym)T (∆tm −∆ym)

= (Btm −Bym)T (Btm −Bym)

= (tm − ym)TBTB(tm − ym)

= (tm − ym)TL(tm − ym) (10)

where B is the incident matrix. It is noticed that BTB is
equal to the graph Laplacian matrix L. Graph Laplacian
matrix assumes that the differences of neighbor pixel
between target images and estimated images, denoted
as (tm − ym) is smooth with respect to concerning
corresponding graph G. In particular, it enforce the value
of (tm−ym)TL(tm−ym) should be small. In the training
process, GLRDN is use with BCE objective function

C. Euler Characteristic-based Regularizer

The Euler characteristic is a property of an object’s
shape that is not affected by topological changes such
as scale transformations and rotations. EC can define
the number of objects in two-dimensional space provided
there are no holes in the object. EC can be obtained by
calculation of the relations between vertices (P), edges
(S), and faces (F ) :

EC = F − S + P (11)

TABLE I. COMPARISON OF ARCHITECTURAL PERFORMANCE
WITHOUT AND WITH OUR PROPOSED GBS ON THE DRIVE

DATASETS.

Methods Sn Sp Acc AUC

Baseline 0.6707 0.9867 0.9465 0.9652

Baseline+GBS 0.7064 0.9897 0.9536 0.9794

For a binary image, the EC can be constructed in the
following steps: (a) define pixels as imaginary vertices,
(b) calculate the number of edges based on 8x8 neigh-
boring pixels, (c) count the number of vertices, (d) count
the number of edges, (e) count the number of faces, (f)
calculate the EC using Eq. (11).

We demonstrate the calculation of Euler Characteristic
of simple binary image as shown in Fig. 4. In this study,
we calculated the EC from the CNN output. Since the EC
of an object equals the number of objects in the image, we
use this information to determine the number of isolated
objects in the CNN output. Then, information about the
number of isolated objects is combined with BCE loss as
a regularizer in the CNN training process To minimize
the number of isolated objects.

For the EC calculation to be invariant, it is necessary
to calculate the vertices, sides, and faces in the opposite
direction. Then, calculated the average of the EC in two
different directions as follows:

Rec =
EC1 + EC2

2
(12)

In this study, EC estimate from the segmentation
output of network[11]. We combine the objective function
with regularization term as:

O3 = Ebce + λRec (13)

where λ is denoted the parameter to adjust the effect
of EC regularizer.

III. EXPERIMENTS

We measure the performance of our proposed method
using Sensitivity, Specificity, Accuracy, and Area Under
curve on DRIVE, STARE, and CHASEDB1 datasets. To
increase the number of datasets, we divide the image into
patches of 48 x 48 pixels to get 4,750 patches for each
image. In this way, we get a sufficient number of datasets
to perform the training step. The first, we compare our
proposed method with baseline U-Net architecture with
and without regularizer term. For the experiment, we train
the network with 100 epochs and initialize the learning
rate to 0.001. To achieve convergence, Every time we
reach 25 epochs, we reduce the learning rate by 10 times.
For the training sample, we set the batch to 32 and used
Adam as the optimizer.



Fig. 6. Receiver Operating Characteristics (ROC) curve analysis of blood vessel segmentation between our proposed regularizer and without
proposed regularizer on the different datasets. (a)DRIVE (b)STARE and (c)CHASEDB1.

TABLE II. COMPARISON OF ARCHITECTURAL PERFORMANCE
WITHOUT AND WITH OUR PROPOSED GLRDN ON THE DRIVE

DATASETS.

Methods Sn Sp Acc AUC

Baseline 0.7429 0.9840 0.9544 0.9686

Baseline+GLRDN 0.7914 0.9791 0.9561 0.9740

TABLE III. COMPARISON OF ARCHITECTURAL PERFORMANCE
WITHOUT AND WITH OUR PROPOSED EULER

CHARACTERISTIC-BASED REGULARIZER ON THE DRIVE
DATASETS.

Methods Sn Sp Acc AUC

Baseline 0.7583 0.9826 0.9551 0.9691

Baseline+EC 0.8463 0.9759 0.9600 0.9824

IV. RESULTS

We show some segmentation results from the exper-
iment in the figure 5. The figure shows a very compli-
cated retinal vessel consisting of large and small vessels
crossing each other. The segmentation results from the
U-Net baseline appear poor in detecting complex vessels
and small vessels. However, the proposed regularizer can
improve the segmentation results on small vessels with
more detail and better.We also present the results of our
quantitatively proposed regularizer on the DRIVE dataset
in the I, II, and III tables. Without a regularizer, the
baseline network loses a lot of small vessels and creates
many isolated objects. These tables indicate that our
regularizer is able to segment small vessels and minimize
the number of isolated objects on the vessel than without
using a regularizer. Figure 6 shows the performance of our
proposed regularizer compared to the baseline network
without regularizer on different datasets using ROC curve
analysis. In the figure, the blue line shows the ROC
curve of the baseline network without the regularizer.
The orange line shows the ROC curve of the baseline
network merged with our regularizer. The two ROC curve
lines show that our proposed regularizer can improve
the performance of the baseline network. This indicates
that our proposed performance regularizer can provide
better performance enhancement on retinal blood vessel
segmentation. To get better visualization, we zoomed in
on the ROC curve at the top left.

V. CONCLUSIONS

This study takes advantage of the neighboring pixel
information in the image as additional information on the
CNN. This information is constructed as a regularization
term in the objective function. The method we propose
is able to improve vessel segmentation, especially on
small vessels, better than without using a regularizer.
In addition, isolated objects are also getting minimal.
The calculation of regularizer on a pixel-by-pixel basis
is a limitation of this approach. In the future, we plan
to expand the work by using sparse graphs to reduce
computational costs.
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