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ﬂstract. Lung canc one of the most deadly diseases in the world.
Detecting such tumors at an early stage can be a tedious task. Existing
deep learning architecture for lung nodule identification used complex
architecture with large number of parameters. This study developed a
cascaded architecture which can urately segment and classify the be-
nign or malignant lung nodules on computed tomography (CT) images.
The main contribution of this study is to introduce a segmentation net-
work where the first stage trained on a public data an help to recog-
nize the images which included a nodule from an‘vﬁ set by means of
trans arning. And the segmentation of a nodule improves the second
stage to classify the nodules into benign and malignant. The proposed
architecture outperforn the conventional methods with an area under
curve value of 95. 67%,@0 experimental results showed that the classi-
fication accuracy of 97.96% of our proposed architecture outperformed
other simple and complex architectures in classifving lung nodules for
lung cancer detection.

Keywords: Image Segmentation - Classifiation - Cascade Network -
Lung nodule- Deep Learning - CT Images.

m Introduction

Lun@@ancer is one of the deadliest cancers in existence. The mortality rate

due to lung cancer is higher than to colorectal, breast, and tate cancers
combined [1]. Anyone can get lung cancer and approximately 60% to 65% of
all new lung cancer diagn are among people who have never smoked or are

former smokers [I[2[3[4]5]. Only 19% of all people diaggffed with lung cancer
will survive 5 years or more, but if its caught before it spreads, the chance for
5-year survival improves dramatically [I]. The difficulty in diagnosing the lung
cancer arises from the fact that it never shows the symptoms in the earlier stages.
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The fact that early diagnosis can significantly improve the survival rates of the
patiEgats makes it a challenging yet important task.

computed tomography (CT) imaging is one of the most effective and has
been widely used for the detection of lung cancers. However, non invasive meth-
ods of early stage cancer detection is important |[6]. On average the radiologists
subjective measurement of lung nodules takes around 2-3.5 minutes per slice
of CT scan and also there can be variations in their judgements [7]. There-
fore, an unbiased automatic model which can quickly diagnosing the nodules
for lung cancer is an important task. A lot of computer aided techniques have
been attempted in the past [8],[9], [10] but it is shown clearly that deep learning
techniques [11], [12], [13], By have a significant advantage over the others [15],
[16]. However, the lack of annotated data makes it challenging to train a deep
neural networks due to their d(\p(\nd(\nt‘( the number of data set. This study
proposed to use a U-Net architecture to segment the lung nodules from the CT
scan images and thus screen the CT scan slices that are suspicious of having
nodules. The model employed the idea of transfer learning by training on pub-
licly available data set and then testing on a private data set. The subsequent
part of the paper compared \’Eimﬁ methods to classify the resulting CT scan
images containing nodules into cancerous and non-cancerous. The performance
of the proposed encoder followed by fully connected network is compared with
the simple fully connected and encode-decoder followed by fully connected net-
work in classifying the lung nodules for lung cancer detection, along with some
of the other pre-existing models such as Resnet50, VGG and Densenet.

2 Materials and Methods

We used the existing LUNA data set to train the modgg¥for lung nodule segmen-
tation |17]. The data set included 888 CT im: The LIDC/IDRI database
also contains annotations which were collected during a two-phase annotation
process using four experienced radiologists. Each radiologist marked lesions as
they identified as non-nodule, nodule <3 mm, and nodules > 3 mm. The refer-
ence standard of our challenge consists of all nodules > 3 mm accepted by at

Fig. 1. a) Original CT image, b) generated ground truth mask.
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least 3 out of 4 adiologists. Annotations that are not included in the reference
standard (non-nodules, nodules <3 mm, and nodules annotated by only 1 or 2
radiologists) are referred as irrelevant findings. The ground truth mask for each
of the cancerous nodules was generated by using the nodule centre and the di-
ameter value of ti@jimage pixels indicated in the annotation file. The annotation
file is stored as a csv file that contains one finding per line. Each line holds the
SeriesInstanceUID of the scan, the world coordinate pixels x, y and z position
of each finding and the corresponding diameter in mm. The annotation file con-
tains 1186 nodules. The corresponding nodule centre and diameter value for the
image pixels were turned into white and the remaining pixels were turned into
black as shown in Fig

The testing was done on a private data set where the ground truth for seg-
mentation was absent but the label for each patient whether benign or malignant
was used. The data set consisted of 102 benign and 102 malignant patients with
CT images. The private data set acquired from @nyung University Dongsan
Medical Center, South Korea. Egh subject has CT volume and PET volume
data set. The CT resolution was 512 x 512 pixels at 0.98mm x 0.98mm, with a
slice thickness and a inter-slice distance of 3mm. The PET resolution was 128
x 128 pixels at 2.4mm x 2.4mm, with slice thickness and interslice distance of
33mm.

3 Cascaded Architecture

This study proposed to suggest a cascaded network to segment and classify be-
nign or malignant nodules for the identification of lung cancer. The segmentation
network used to recognize the suspected nodules on CT images which are then
classified by using classification network into benign or malignant nodules. The
proposed cascaded architecture is shown in Fig

3.1 Segmentation Network

We proposed two-stage lung cancer identification network using CT lung data
sets. We used public data set of lung CT slices to train the segmentation network.
The lung region slices and their corresponding ground truth for nodules were
generated as it was described earlier in the annotation file. We have included
the slices between starting and ending slices along with five more slices before
and after the starting and ending slice of the ground truth.

A typical U-Net tyk model was proposed as shown in Fig For the
encoder, we used five convolutional layers, each layer with a ReL U activation.
Each convolutional layer has 3 x 3 kernels and the number of channels starts
from 64 and d@g®les every layer. A max pooling layer is applied after every con-
volution layer filat reduces the size of the channel by half. The purpose of using
pooling layers 18 to progressively reduce the spatial size of the representation to
reduce the amount of parameters and computation in the network, and hence
to also control over fitting. The Max Pooling Layer operates independently on
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Fig. 2. Proposed cascaded architecture for the identification of lung cancer.

14

g&r}' depth slice of the input and resizes it spatially, using the MAX operation.
A 50% drop out is applied on last two convoluti after applying ReLU acti-
vation. ReLU activation function is a piece-wisemar function which prunes
the negative part to 0 and retains the positive part. It is much faster as com-
pared to other activation functions due to it's simple max operation. For the
decoder, we used four upsampling convolutions layers, each layer followed by
ReLU. The output of a upsampling convolution is concatenategsgvith an output
of the corresponding part of the decoder. The softmax with the binary cross
entropy loss function is calculated for accounting the error value. The receiver
operating characteristic curve (ROC) along with the loss variation based on the
test data set is presented in Fig[4]

The segmentation network consists of 2 stages, the first stage is network
trained with public dataset to predict the output image pixels y; from a given
input image pixels r;. So, we can define the loss function on segmentation net-
work L as :

N
Ly =Z{t,-fog(%+ (l—t,-)log(l_yi)} (1)
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where (z;,%;)[i = 1,...,M, x; is a i'" input data from the training public dataset
X, and #; is a i*" from data target or label T of public dataset. The number of
training samples and labels is denoted by M and N, respectively.

The second stage is trained network used to predict the nodule segmentation
from the private data set. The trained weight of the segmentation network is
utilized as a screening network to find the presence of lung nodules on the private
lung CT data set.

In the segmentation architecture we used discriminator, that decides whether
the segmented image consisted a nodule or not. The objective criterion used in
the discriminator was if the maximum value of the pixel values >0.35 then the
resultant image contains suspicious nodules, otherwise discarded.

3.2 Classification Network

The images which were suspected to have nodules by the previous stage seg-
mentation network were further used in the classification network for classifying
nodules. The images did not include nodules were omitted for training.

The segmented nodule images with their corresponding original CT images
and labels indicating whether the nodules are benign or malignant were used as
input into the coder network for classification. For this task, we define input =;
for classification network as :
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Fig. 4. Performance plot OE the lung nodule segmentation. The left and right figures
shows the ROC curve and loss variations, respectively for the segmentation network.

:f,- = {:f,-_.:i},'} (2)

where (; € X ) is original image from private dataset and (i € V) is image with
suspicious nodule. The classification network architecture is trained to predict
the class labels ; from a given input ;. If (f; € T) is labels for private dataset,
we can define the loss function on classification network L, as :

M
Ly =) {Elog(i) + (1 = B)log(1 = )} (3)
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The ratio of the benign and malignant nodules is 1:5. Therefore, to grease
the number of benign nodules we used thrice the sampling technique to
rectify the data imbalance problem. The encoder with the fully connected layer is
developed to classify the nodules for the lung cancer. The pffEposed classification
network is shown in Fig For the encoder, we used three convolutional layers,
each layer with a ReLl activation. Each convolutional layer has 3 x 3 kernels
and the number of channels starts from 8 anr@tbles every layer. A max pooling
layer is applied after every convolution layer that reduces the size of the channel
half. A 50% drop out is applied on last convolution after ReLU activation.
ropout changed the concept of learning all the weights together to learning
a fraction of the weights in the network in each training iteration. Dropout is
highly effective in reducing over-fitting of the network. It prevents the network
from being too reliant on one or a small gronp of neurons, and can force the
network to be more accurate even in the absence of certain information. The

output is then flattened and into a fully connected layer with 128 nodes. It
is transferred to a two node tully connected layer which is used to predict the
class of the nodule in one-hot fashion. The loss and acc 7 variation of our

proposed classification network based on the test data set is shown in Fig|[7]
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Fig. 5. Segmented results of lung nodules. The left image shows the original CT. The

middle image is the ground truth. The right image shows the predicted lung nodule

for lung cancer using our segmentation network..
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4 Experimental Settings

4.1 Experiment

The U-Net model for segmentation network used train, validation and test data
set. Out of 888 CT images, the data set used for train, validation and test is
80%, 5% and 15%, respectively. For segmentati etwork, we used batches of 16
images and their corresponding ground truth. Adam optimizer with arning
rate of le-4 is used. The encoder network for classification used train, validation
and test data set. For classification, the data set used for train, validation and
test is 60%, 15% and 25%, respectively. We used Adam as an optimizer and
set the learning rate of le-4. All networks were implemented using Keras and
Tensorflow backend with 4GB memory.

4.2 Ewvaluation

We evalnated our proposed segmentation network based on U-Net with im-
inator and classification network based on encoder with fully connected for the
segmentation and classification of two classes of lung nodules on private CT
data set. The efliciency of the architecture in predicting the two classes of lung
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Fig. 7. Performance plot OE the lung nodule classification. The left and right figures
shows the accuracy and loss variations, respectively for the classification network.

1

nodules Ompared to the ground truth. We compared the performance of our
proposed classification network based on encoder with fully connected network
with simple fully connected network and encoder and decoder followed by the
fully connected layer, along with other pre-existing models like Resnet50, VGG
and DenseNet. In the fully connected network the image is flatten and directly
fed into the fully connected network layers. The encoder and decoder followed by
the fully comnected layer network is similar with the segmentation network archi-
tecture. All classification networks were trained with a similar hyper-parameter
values. The quantitative networks performance was measured using the average
value of precision, recall, F1 score and accuracy. If the predicted class region
belongs to the valid ground truth region, then it is considered a true positive
(TP), otherwise, it is considered as a false positive (FP). If the predicted class
region is correctly identified but does not belong to the valid gronndtruth region;
then, it is considered a true negative (TIN).

We carried out additional experiments to show the ability of the proposed
segmentation network with positron emission tomography (PET) images. PET
images were used as a reference to confirm the reliability of our segmentation
network that accurately recognizing the benign and malignant nodules.

5 Results

The visualization of few representative examples of segmentation of nodules
for lung cancer is presented in Fig In addition, the proposed segmentation
network shows highest performance in recognizing the lung ndfiiles is confirmed
with the reference PET image which is shown in Fig[§] The comparison of the
performance of our proposed encoder with fully connected network outperforms
the simple fully connected network and encoder and decoder followed by the
fully connected layer.

Our proposed classification network shows highest precision, recall and F1
score of 98.0%, and accuracy of 97.9%, which is much higher than the coupled
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The left imag
middle image is the reference PET image for lung nodule. The right image shows the

Fig. 8. Segmented results of lung nodule shows the original CT. The

predicted lung nodule for the original CT image on the left for lung cancer using our
segmentation network.
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encoder and decoder network as shown in table[I] Furthermore the performance
of our proposed classification network is higher than the simple fully connected
network. It is because the simple fully connected network is not capable of ex-
tracting precise features for classification. In addition, our proposed model out-
performed the state-of-the- such as Resnet50, VGG and Densenet with a
huge difference of accuracy as shown in table[2] This can be attributed to the
fact that our segmentation model was superior and boosted the performance
of our classif@ion model over the existing models. Furthermore, other exist-
ing methods for lung cancer classification performed using deep learning model
produced 80.0% [20] and 94.50% [2I] accuracy. Whereas, our proposed cascaded
architecture for lung cancer identification achieved high accuracy of 97.9%, in-
dicated the effectiveness of the proposed framework in lung nodule location for
cancer.

%ble 1. Performance comparison of the proposed cascaded encoder network with
different classification network architectures for lung cancer detection

Network Architectures Precision Recall F1 Score Accuracy
Fully connected 92% N% 91% 90.62%
Encoder-decoder with fully connected 26% 51% 3% 51.02%
Proposed 98% 98% 98% 97.96%

Table 2. Performance comparison of the proposed cascaded network classification with
the state-of-the-arts

Network Architectures Precision Recall F1 Score Accuracy
Resnet 50 71.25% 71.93% T1.57T% T7.14%
VGG 75.94% 75.86% 75.33% 75.93%
Densenet 76.80% T6.47% 75.80% 76.50%
Proposed 98% 98% 98% 97.96%

6 Conclusion

We osed two-stage cascaded architecture for the segmentation and classifica-
tion of benign and malignant nodules for lung cancer detection. In the cascaded
architecture, U-Net based segmentation network performed as a screening net-
work and transfer the trained weights of the public data set of CT slices to the
private CT slices that did not consisted ground truth for lung nodule localization.
In addition the segmentation network improves the performance and robustness
in classifying benign or malignant lung nodules. The experimental results sug-
gested that our proposed encoder followed by fully connected layers classification
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network outperformed other classification networks for the identification of lung
cancer.
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