
Single-Image Super-Resolution Reconstruction
based on the Differences of Neighboring Pixels?

Huipeng Zheng1, Lukman Hakim1, Takio Kurita2, and Junichi Miyao2

1 Department of Information Engineering, Hiroshima University, 1-4-1 Kagamiyama,
Higashi-Hiroshima, 739-8527 Japan

2 Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1
Kagamiyama, Higashi-Hiroshima-shi, Hiroshima739-8527, Japan
{m191504,lukman-hakim,tkurita, miyao}@hiroshima-u.ac.jp

Abstract. The deep learning technique was used to increase the perfor-
mance of single image super-resolution (SISR). However, most existing
CNN-based SISR approaches primarily focus on establishing deeper or
larger networks to extract more significant high-level features. Usually,
the pixel-level loss between the target high-resolution image and the es-
timated image is used, but the neighbor relations between pixels in the
image are seldom used. On the other hand, according to observations,
a pixel’s neighbor relationship contains rich information about the spa-
tial structure, local context, and structural knowledge. Based on this
fact, in this paper, we utilize pixel’s neighbor relationships in a different
perspective, and we propose the differences of neighboring pixels to reg-
ularize the CNN by constructing a graph from the estimated image and
the ground-truth image. The proposed method outperforms the state-of-
the-art methods in terms of quantitative and qualitative evaluation of
the benchmark datasets.

Keywords: Super-resolution · Convolutional Neural Networks · Deep
Learning.

1 Introduction

Single-Image Super-Resolution (SISR) is a technique to reconstruct a high-
resolution (HR) image from a low-resolution (LR) image. The challenges prob-
lem in the super-resolution task is the ill-pose problem. Many SISR techniques
have been developed to address this challenge, including interpolation-based[1,
2], reconstruction-based[3], and deep learning-based methods[4].

Even though CNN-based SISR has significantly improved learning-based ap-
proaches bringing good performances, existing SR models based on CNN still
have several drawbacks. Most SISR techniques based on CNN are primarily con-
cerned with constructing deeper or larger networks to acquire more meaningful
high-level features. Usually, we use the pixel-level loss between the target high-
resolution image and the estimated image and neglect the neighbor relations
between pixels.
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Basically, natural images have a strong pixel neighbor relationship. It means
that a pixel has a strong correlation with its neighbors, but a low correlation
with or is largely independent of pixels further away[11]. In addition, the neigh-
boring relationship of a pixel also contains rich information about the spatial
structure, local context, and structural knowledge[7]. Based on this fact, the au-
thors proposed to introduce the pixel neighbor relationships as a regularizer in
the loss function of CNN and applied for Anime-like Images Super-Resolution
and Fundus Image Segmentation[5]. The regularizer is named Graph Laplacian
Regularization based on the Differences of Neighboring Pixels (GLRDN). The
GLRDN is essentially deriving from the graph theory approach. The graph is
constructed from the estimated image and the ground-truth image. The graphs
use the pixel as a node and the edge represented by the ”differences” of a neigh-
boring pixel. The basic idea is that the differences between the neighboring pixels
in the estimated images should be close to the differences in the ground-truth
image.

This study propose the GLRDN for general single image super-resolution
and show the effectiveness of the proposed approach by introducing the GLRDN
to the state-of-the-art SISR methods (EDSR[6] and RCAN[12]). The proposed
GLRDN can combine with the existing CNN-based SISR methods as a regular-
izer by simply adding the GLRDN term into their loss functions. We can easily
improve the quality of the estimated super-resolution image of the existing SISR
methods.

The contribution of this paper can summarize as follow : (1) Proposed GLRDN
to capture the relationship between neighboring pixels for general single image
super-resolution; (2) Analyzed the baseline architecture with and without our
regularizer; (3) Explored our proposed methods with state-of-the-art methods
in single image super-resolution.

The structure of this paper is as follows. In Section 2, we presented some re-
lated methods with our work. In section 3, we explain the proposed method. The
results and experiments are detailed in Section 4. Finally, section 5 is presented
the conclusion of this study.

2 Related Work

2.1 Graph Laplacian Regularization based on the Differences of
Neighboring Pixels

The GLRDN was proposed by Hakim et al.[5]. This regularizer uses the graph
theory approach to capture the relationship of the difference between pixels.
Assume that we have two images, estimated image y and target image t. Then
G = (V,E) constructed be a graph where V = {i|i = 1, . . . , N} is the set of
the pixel indices with N pixels and the E = {(i, j)|i, j ∈ V } is the neighboring
relations between the pixels. Furthermore, the differences of neighboring pixels
of two images sG are given as
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SG(t,y) =
∑

(i,j)∈E

{(ti − tj)− (yi − yj)}2

=
∑

(i,j)∈E

(∆tij −∆yij)2

= (∆t−∆y)T (∆t−∆y)

= (Bt−By)T (Bt−By)

= (t− y)TBTB(t− y)

= (t− y)TL(t− y) (1)

where B is incident matrix and L is the Laplacian matrix that is defined from
the identity matrix.

3 Method

This study aims to capture neighboring pixel’s relationships from the recon-
structed image estimated from the LR image and the HR images and minimize
the differences of the adjacent pixels differences. As a result, the loss is defined
as the squared errors of the differencess between the predicted image and HR
images. In the following sections, we will go through the specifics of the proposed
approach.

3.1 Estimation of the Differences Neighboring Pixels

Let us consider the set of training samples X = {(xm, tm)|m = 1, ...,M} where
xm is a mth input image and tm is the mth target image. M is define as the
total of images in training samples. The network is trained to predict the output
HR image ym from the mth input LR image xm.

The GLRDN is defined as the graph, which is pixels as nodes and sum of the
squared differences of the differences of neighboring pixels between the target
image tm and the estimated images ym as edges. Then the GLRDN is given as

SG =

M∑
m=1

SG(tm,ym) =

M∑
m=1

(tm − ym)TL(tm − ym) (2)

This measure SG becomes small if the neighboring relations of the pixels in
the estimated output images are similar to those of the target images.

3.2 CNN-based Super-Resolution with GLRDN

We can apply the proposed GLRDN to any existing CNN-based Super-Resolution
algorithms by simply adding the GLRDN term in the loss function for the
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Fig. 1. Illustration of the proposed method on CNN-based Super-Resolution

training. The proposed method is illustrated in Fig. 1. The CNN-based Super-
Resolution is trained to estimate the HR image as y for a given LR input image
x. The first convolutional layer retrieves a series of feature maps. The second
layer non-linearly transfers these feature maps to high-resolution patch repre-
sentations. To construct the final high-resolution image, the last layer integrates
the estimates within a spatial neighborhood.

In the Super-resolution task, using the Sum Squared Error (SSE) as the
objective function is common. The Sum Squared Error is given by

Esse =

M∑
m=1

(tm − ym)2 (3)

For the training of the parameters of the network, we combine the SSE loss
with the regularization term as

Qsr = Esse + λSG (4)

where λ is a parameter to adjust the regularization. The network learning pro-
cess is more robust by adding the term regularization because it considers the
relationship between pixels rather than just comparing pixels with pixels.

4 Experiments

4.1 Experimental Setting

We adopt the EDSR and RCAN as our baseline models due to their great per-
formance on image super-resolution tasks. In all these settings, we compare the
performance with and without our regularizer. We set 300 epochs and batch size
to 16. We set the learning rate to 10−4 and divided at every 2× 105 minibatch.

Our experiments are performed under the ×2, ×3, ×4 scale factor. Dur-
ing training, we use the RGB input patches with the size of 48 × 48 in each
batch. Augmentation technique also used on the training images by rotating 90◦,
180◦, 270◦, and flipped randomly. This experiments implemented on DIV2K[13],
Set5[14], Set14[15], B100[10], Urban100[9], and Manga109[8] datasets. We asses
the improvement of our method using PSNR and SSIM measurements.
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Fig. 2. Visual comparison of our proposed methods on Urban100, B100, and Manga109
datasets.

Table 1. Ablation study on Set5, Set14, and B100 datasets.

Method λ
Set5 Set14 B100

PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic - 28.42 0.8104 26.00 0.7027 25.96 0.6675
EDSR 0 30.89 0.8683 27.66 0.7515 27.12 0.7159
EDSR+ours 0.1 31.69 0.8851 28.15 0.7655 27.49 0.7279
EDSR+ours 1 31.75 0.8863 28.19 0.7663 27.52 0.7643
EDSR+ours 5 31.74 0.8857 28.18 0.7653 27.52 0.7262
EDSR+ours 10 31.75 0.8855 28.18 0.7641 27.52 0.7252
EDSR+ours 100 31.65 0.8840 28.12 0.7620 27.49 0.7230

Table 2. Ablation study on Urban100 and Manga109 datasets.

Method λ
Urban100 Manga109

PSNR SSIM PSNR SSIM

Bicubic - 23.14 0.6577 24.89 0.7866
EDSR 0 25.12 0.7445 29.68 0.8999
EDSR+ours 0.1 25.83 0.7749 30.84 0.9061
EDSR+ours 1 25.92 0.7749 30.95 0.9084
EDSR+ours 5 25.95 0.7767 30.91 0.9072
EDSR+ours 10 25.95 0.7762 30.86 0.9062
EDSR+ours 100 25.92 0.7736 30.84 0.9042

5 Result and Discussion

Ablation Study. In this part, the ablation study presented the effect of the
proposed regularizer. We combined EDSR with our regularizer by setting differ-
ent λ. We started with a simple EDSR model by setting the number of layers
B = 12 and the number of feature channels F = 64 with a scaling factor of 1.
We compared the PSNR/SSIM result on the different testing datasets by set-
ting the scale factor as 4. Table 1 showing the ablation study on Set5, Set14,
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Table 3. Performance of our proposed method compared with the state of the art
method.

Method scale
Set5 Set14 B100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic x2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRCNN x2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9663
FSRCNN x2 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020 36.67 0.9710
VDSR x2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750
LapSRN x2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740
MemNet x2 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740
EDSR x2 38.07 0.9606 33.65 0.9167 32.20 0.9004 31.88 0.9214 38.22 0.9763
SRMDNF x2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
D-DBPN x2 38.09 0.9600 33.85 0.9190 32.27 0.9006 32.55 0.9324 38.89 0.9775
RDN x2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780
RCAN x2 38.25 0.9608 34.08 0.9213 32.38 0.9020 33.29 0.9363 39.22 0.9778
EDSR+(ours) x2 38.17 0.9610 33.74 0.9182 32.25 0.9000 31.96 0.9248 38.57 0.9764
RCAN+(ours) x2 38.31 0.9612 34.20 0.9222 32.39 0.9022 33.30 0.9369 39.27 0.9781

Bicubic x3 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349 26.95 0.8556
SRCNN x3 32.75 0.9090 29.30 0.8215 28.41 0.7863 26.24 0.7989 30.48 0.9117
FSRCNN x3 33.18 0.9140 29.37 0.8240 28.53 0.7910 26.43 0.8080 31.10 0.9210
VDSR x3 33.67 0.9210 29.78 0.8320 28.83 0.7990 27.14 0.8290 32.01 0.9340
LapSRN x3 33.82 0.9227 29.87 0.8320 28.82 0.7980 27.07 0.8280 32.21 0.9350
MemNet x3 34.09 0.9248 30.00 0.8350 28.96 0.8001 27.56 0.8376 32.51 0.9369
EDSR x3 34.26 0.9252 30.08 0.8418 29.20 0.8106 28.48 0.8638 33.20 0.9415
SRMDNF x3 34.12 0.9254 30.04 0.8382 28.97 0.8025 27.57 0.8398 33.00 0.9403
RDN x3 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.80 0.8653 34.13 0.9484
RCAN x3 34.79 0.9255 30.39 0.8374 29.40 0.8158 29.24 0.8804 33.99 0.9469
EDSR+(ours) x3 34.41 0.9253 30.18 0.8443 29.27 0.8141 28.49 0.8672 33.76 0.9416
RCAN+(ours) x3 34.85 0.9259 30.50 0.8392 29.41 0.8186 29.25 0.8838 34.15 0.9484

Bicubic x4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRCNN x4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555
FSRCNN x4 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR x4 31.35 0.8830 28.02 0.7680 27.29 0.7260 25.18 0.7540 28.83 0.8870
LapSRN x4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900
MemNet x4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942
EDSR x4 32.04 0.8926 28.43 0.7755 27.70 0.7351 26.45 0.7908 30.25 0.9028
SRMDNF x4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
D-DBPN x4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137
RDN x4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151
RCAN x4 32.78 0.8988 28.68 0.7832 27.85 0.7418 27.07 0.8121 31.02 0.9157
EDSR+(ours) x4 32.21 0.8934 28.51 0.7768 27.75 0.7369 26.52 0.7937 30.53 0.9057
RCAN+(ours) x4 32.90 0.8992 28.79 0.7849 27.86 0.7423 27.13 0.8139 31.10 0.9163

and B100 datasets, and Table 2 showing the ablation study on Urban100 and
Manga109 datasets. The best results are highlighted in bold. As shown in Table
1 and Table 2, the best parameter λ in Eq. 4 is 1 which highest PSNR and
SSIM on Set5, Set14, B100, and Manga109 datasets. Meanwhile, we found that
λ=5 is the best on Urban100 datasets. We obtained these values by performing
parameter experiments in the ranges 0 to 100, λ=0 means we use only EDSR as
a baseline without a regularizer. Along with increasing lambda, the stronger the
influence of the relationship between pixels in the learning process. Compared
to baseline, our approach achieved an improvement of PSNR and SSIM scores
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over all datasets.

Comparation with state-of-the-art. To know the advantages of our pro-
posed regularizer, we combine our regularizer with EDSR and RCAN and then
compare the result with state-of-the-art CNN-based SR methods. Table 3 sum-
marizes all of the quantitative data for the various scaling factors. The best re-
sults are highlighted in bold. Compared to competing approaches, joining RCAN
and our methods achieve the best results across all datasets and scaling factors.
The qualitative result of our approach is shown in Fig. 2. To know the differ-
ences in detail, we zoomed in on a portion of the image area. Fig. 2 showing our
approach demonstrated more realistic visual results compared to other methods
on Urban100, B100, and Manga109 datasets. It means the proposed regularizer
succeeds in reconstructing the details of the HR image generate from the LR
image compared over baseline methods.

6 Conclusion

This paper shows that the differences in pixels neighbor relationships can es-
tablish the network more robust on super-resolution tasks. Our method employs
the adjacent pixels differences as a regularizer with existing CNN-based SISR
methods to ensure that the differences between pixels in the estimated image are
close to different pixels in the ground truth images. The experimental findings on
five datasets demonstrate that our method outperforms the baseline CNN with-
out regularization. Our proposed method generates more detailed visual results
and improved PSNR/SSIM scores compared to other state-of-the-art methods.
Future work will implement the differences in pixel neighbor relationships as a
regularizer on different computer vision tasks.
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